Easy Method to Solve Maximum and Minimum Values in Trignometry For SSC Exams
Basic Methods - Effective For SSC CGL, SSC CHSL, SSC MTS, UPSC Prelims.
Today we will discuss about some basic short method, How to solve Minimum and Maximum values in Trignometry for SSC CGL Exams. As we have seen 2-3 questions was generally asked from this section. Many people finds it difficult to solve this types of problem. Today Just note-down the basic formula's. It will help you to understand the logic behind it. Just Apply the tricks.
- This Page May take sometime to Load. If you are using Slow Internet Connection then its better to download the PDF. You will get the PDF Download option.
Basic Formula's
As you all know the basic formula’s in Trigonometric Identities -
- $Si{{n}^{2}}\theta +Co{{s}^{2}}\theta =1$
- $1+Ta{{n}^{2}}\theta =Se{{c}^{2}}\theta $
- $1+Co{{t}^{2}}\theta =Co{{\sec }^{2}}\theta $
Basic Formula Chart
Basic
Rules and Formula’s to Understand the Logic Behind it & Apply it on your
questions-
Another Rules to
Solve By using A.P & G.P –
Arithmetic Mean =
$\frac{a+b}{2}$
Geometric Mean =
$\sqrt{ab}$
Now Lets see the
examples – Here we will discuss those questions only which was asked in
previous papers of SSC CGL, CHSL Only.
Example 1. Find the Minimum Values of
$Se{{c}^{2}}\theta +Co{{\sec }^{2}}\theta =?$
Solution- If You find any question like this
i.e. Second term is the reciprocal of the first then try to convert your questions
according to the chart.
Here we will going to convert & apply some
basic Formula’s from the above –
As we know
$1+{{\tan
}^{2}}\theta =Se{{c}^{2}}\theta $
$1+Co{{t}^{2}}\theta
=Co{{\sec }^{2}}\theta $
Applying Both the
Basic Formula’s, We Get –
2+${{\tan
}^{2}}\theta +Co{{t}^{2}}\theta $.
Now Apply for the
above Chart- We get the formula for minimum values, Apply
on it
2+${{\tan
}^{2}}\theta +Co{{t}^{2}}\theta$= 2+ $2\sqrt{1*1}$
= 4 Answer !!
Examples 2. Find the Minimum values of
$Si{{n}^{2}}\theta +Co{{s}^{2}}\theta +Ta{{n}^{2}}\theta +Co{{t}^{2}}\theta
+Co{{\sec }^{2}}\theta +Se{{c}^{2}}\theta =?$
Solution – As you can see in the questions
& we know that
$Si{{n}^{2}}\theta +Co{{s}^{2}}\theta =1$
Hence applying the above formula we get,
$1+{{\sec
}^{2}}\theta +\cos e{{c}^{2}}\theta +{{\tan }^{2}}\theta +{{\cot }^{2}}\theta $
Now we know (Using A.P & G.P Formula)-
${{\tan }^{2}}\theta +{{\cot }^{2}}\theta =2$
Therefore,
$1+2+{{\sec }^{2}}\theta +\cos e{{c}^{2}}\theta
$
Now Change ${{\sec }^{2}}\theta ,\cos
e{{c}^{2}}\theta $
$1+2+\frac{{{\sin }^{2}}\theta +{{\cos
}^{2}}\theta }{{{\sin }^{2}}\theta {{\cos }^{2}}\theta }$
Now again Apply – the basic formula from the
chart
Hence finally we get –
$1+2+\frac{1}{{{(\frac{1}{2})}^{2}}}$
=7 Answer !!
Post a Comment