# Practice Test on Simplification for SBI PO Prelims

## Practice Test On Simplification

Directions(1-7): What should come in place of the question mark (?) in the following questions?

1.23% of 8040 + 42% of 545 = ?% of 3000
a)56.17
b)63.54
c)71.04
d)69.27
e)45.56

2.(-251 × 21 × -12) ÷ ? = 158.13
a)400
b)500
c)100
d)175
e)225

3.25.05 × 123.95 + 388.999 × 15.001 = ?
a)7000
b)7775
c)8950
d)9857
e)9125

4.7072 ÷ (16% of 884) = 30 × 13/12 of (? ÷ 39)
a)58
b)60
c)56
d)68
e)70

5.1478.4 ÷ 56 + 66.8 × 57 = (? × 3) + (34 ×34.5)
a)887
b)787
c)687
d)957
e)755

6.0.2 × 1.1 + 0.6 × 0.009 = ? - 313.06
a)323.345
b)313.2854
c)253.8712
d)333.4523
e)245.615

7.?% of 555 + 28% of 444 = 202.02
a)8
b)22
c)15
d)26
e)14

8.If 1.5x = 0.04y, then the value of [(y - x)/(y + x)] is :
a)73/77
b)72/77
c)75/79
d)71/73
d)71/75

9.The value of, (1/2 + 1/5 + 1/8 + 1/11 + 1/20 + 1/41 + 1/110 + 1/1640) = ?
a)2
b)1
c)1.7
d)2.2
e)1.3

10.The value of, [1/2 + 1/6 + 1/12 + 1/20 + 1/30 +..... + 1/n(n+1)] = ?
a)1/(n+1)
b)1/(n-1)
c)n/(n+1)
d)0
e)1

1.d)
2.a)
3.c)
4.b)
5.a)
6.b)
7.e)
8.a)
9.b)
10.c)

Solution
1.23% of 8040 + 42% of 545 = ?% of 3000
or, (23 × 8040)/100 + (42 × 545)/100 = (3000 × ?)/100
or, 3000 × ? = 207810
or, ? = 69.27

2.(-251 × 21 × -12) ÷ ? = 158.13
or, ? × 158.13 = 63252
or, ? = (63252/158.13) = 400

3.? = 25 × 124 + 390 × 15
or, ? = 3100 + 5850
or, ? = 8950 (approx)

4.7072 ÷ (884 × 16)/100 = 30 × 13/12 × ?/39
or, 7072 ÷ 141.44 = (5 × ?)/6
or, ? = (50 × 6)/5 = 60

5.1478.4 + 66.8 × 57 = ? × 3 + 34 × 34.5
or, 3834 - 1173 = ? × 3
or, ? = 2661/3
or, ? = 887

6.0.22 + 0.0054 = ? - 313.06
or, ? = 313.2854

7.(555 × ?)/100 + (444 × 28)/100 = 202.02
or, 555 × ? = 7770
or, ? = 7770/555 = 14

8.1.5x = 0.04y
or, x/y = 0.04/1.5 = 2/75
now, (y - x)/(y + x)
= (1 - x/y)/(1 + x/y)
= (1 - 2/75)/(1 + 2/75)
= 73/77

9.1/2 + 1/5 + 1/8 + 1/11 + 1/20 + 1/41 + 1/110 + 1/1640
= 1/2 + 1/5 + 1/8 + 1/20 + 1/11 - 1/11 + 1/10 + 1/41 - 1/41 + 1/40
= 1/2 + 1/5 + 1/8 + (1/20 + 1/10 + 1/40)
= 1/2 + 1/5 + 1/8 + 7/40
= (20 + 8 + 5 + 7)/40
= 1

10.1/2 + 1/6 + 1/12 + 1/20 + 1/30 +.... + 1/n(n+1)
= 1/(1×2) + 1/(2×3) + 1/(3×4) + 1/(4×5) +.... + 1/n(n+1)
= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 +.... + 1/n - 1/(n+1)
= 1 - 1/(n+1)
= n/(n+1)